

WIISHEEP 2021

Materials for Energy – Materials and Irradiation

Prof. Frederico Garrido

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie Université Paris-Saclay-CNRS, Orsay Campus

Frederico.Garrido@ijclab.in2p3.fr Frederico.Garrido@universite-paris-saclay.fr

Materials & Irradiation

• •

Interaction between a solid and a projectile is important in many fields in science

- Basis fundamental science heavily relies on the interaction of a projectile with a target
 - Investigation of the intimate structure of matter
 - Characterization techniques mostly based on the interaction of 'radiations' with matter
- Applied science
 - Ion accelerators (stripping targets)
 - Ion detectors
 - Tools for matter investigation: non destructive characterization techniques (Ion Beam Analysis)
 - Knowledge of radiation damage: nuclear reactors, space vehicle, planets
 - Tailoring new materials: modification of properties in a controlled way (mechanical, electrical, magnetic, microelectronic industry, single ion implantation, radiation tolerant materials)

Materials & Irradiation

Particle-matter interaction at the atomic scale

- Processes of the energy deposition of particles in matter
- Processes of displacements of atoms and electrons

Materials & Irradiation

Designing new materials

Nanometre-sized hillocks

Crystal subdivision

 $\mathsf{MgAl}_2\mathsf{O}_4$ implanted with Cs and annealed at 1120 K

Exfoliation phenomenon

Precipitate formation

Materials & Irradiation The JANNuS-SCALP facility

Materials & Irradiation – Ion Beams

Experimental simulation of irradiation effects by using ion beams

Materials & Irradiation – Ion Beams

PARIS-SACLAY

Synthesis of ODS steel by ion implantation Structural and chemical characterization at nanoscale

ODS steels (Oxide Dispersion Strengthened) Alloys

- Metal matrix with small oxide aggregates embedded within it
 - Properties strongly depends on the size of clusters
- Application in many fields due to enhanced mechanical resistance: nuclear energy, aeronautics, space crafts
 - Incoherency between of the particles within the matrix, preventing creep
 - Mainly prepared par mixing of ball-milling an oxide (YTi₂O₃) with prealloyed metal powder
- Ion beam synthesis to investigate the mechanisms of cluster formation
 - Sequential implantation of various selected elements (Y, Ti, O) to initiate the formation of nanoparticles
 - Nice possibility to investigate the role of the various parameters in the nuclear and growth

Synthesis of ODS steel by ion implantation Structural and chemical characterization at nanoscale

Ion beam synthesis – Y+Ti+O implantations in FeCr

Y+Ti+O ions in FeCr, ann. 1100° C @ JANNuS-SCALP Y+O ions in FeCr, annealing 1100° C @ JANNuS-SCALP ; HAADF, STEM-EDX 4X detectors @ PANAM, C2N

Conventional TEM @ JANNuS-SCALP

Chemical composition identification

Crystallographic structure

PhD thesis Martin Owusu-Mensah, 2019

High Resolution TEM @ PANAM, C2N

Simulation of in-reactor irradiation effects – High Burn-up Structure formation (HBS)

UO₂ is today's nuclear fuel

- Ceramic-type material stable at (very) high T and extremely stable towards irradiation
- Fuel pellets are stacked into a zirconium alloy cladding
- Microstructural evolution at the surface of fuel pellets due to Pu enrichment (epithermal neutrons are captured by ²³⁸U)
- Crystal subdivision and mosaic structure formation limited to the boundary zone (~ 200 μm)

Simulation of in-reactor irradiation effects – High Burn-up Structure formation (HBS)

Experiments and modelling to understand this phenomenon – experimental and atomistic simulations (JANNuS@IJCLab and GANIL)

- Temperature relatively low at the rim
 - Recombination of radiation-induced defects not so effective
- Role played by the fission fragments: electronic and nuclear stoppings
 - Extreme electronic stopping induced a single crystal to polycrystal microstructural transformation
- Role played by fission products: chemical nature of incorporated elements
 - Comparison between soluble and insoluble elements

Simulation of in-reactor irradiation effects – High Burn-up Structure formation (HBS)

- Formation mechanisms of the HBS at the fuel periphery (high porosity, small grain size; local increase of the Pu content)
- Parametric approach : burnup, T, chemistry of impurities, radiation defects and damage
- UO₂ single crystal as model system
- *In situ* irradiation/RBS-C or TEM at 773 K
 - First step is ballistic (radiation damage): same dpa for Xe and La, same evolution (clusters, dislocations, network)
 Second step : dramatic role of FP solubility – polygonization induced by nanometer-sized gas bubbles

PhD Thesis Yara Haddad (2017)

Materials for Energy – Materials & Irradiation

Beams provided by accelerators are unvaluable tools in material science

- Design of materials with selected properties
- Experimental simulation of irradiation-induced effects
- (In situ) characterization (IBA, TEM)

JANNuS facility at IJCLab is opened to various themes

- Energy and nuclear energy
- Microelectronics
- Nuclear astrophysics
- Space technology

PhD students are most welcome !

